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Abstract Introduction 

Examples are given of recent abuses or debatable 
applications of the R-factor ratio test (~9~) for the 
assignment of absolute configuration, and it is shown 
that some of the enhanced ratios that have been used 
do not necessarily imply a statistically significant 
reduction in a, the probability of making a wrong 
assignment. Reasons are given for believing that a is 
usually seriously underestimated anyway, and that in 
marginal situations the weighted ratio, ~w,  is a safer 
guide than ~ and can even contradict the assignment 
based on ~ .  Aids are given to facilitate the estimation 
of a that are much easier to use than interpolation or 
extrapolation from Hamilton's tables [Hamilton 
(1965). Acta Cryst. 18, 502-510]. The misconceptions 
led to a re-examination of the validity of Hamilton's 
application of linear-hypothesis testing to this par- 
ticular problem. A more rigorous justification can be 
achieved by expressing the atomic scattering factors of 
all the anomalous scatterers in a crystal in the form 
foj + f'j + irlff ' and refining r/, the chirality/polarity 
parameter. Its standard deviation offers an alternative 
and more realistic index of the probability of an 
assignment. A postscript contributed by Professor G. 
M. Sheldrick reports very encouraging results for r/ 
refinement of three structures. 
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The assignment of absolute configuration is best based 
on direct measurement of the intensities of Bijvoet pairs 
of reflexions. It is, however, more often obtained as a 
by-product of normal data collection, in which event it 
usually involves one or other of two comparison 
procedures: either a comparison of the R factors of the 
two enantiomeric models over all the measured data, or 
varied forms of comparison over a limited number of 
'sensitive reflexions'. It is usual in the former case to 
assess the statistical significance of the R-factor ratio, 
~q~, by means of Hamilton's (1965) ratio test, but 
certain abuses and misunderstandings have recently 
come to my notice, especially while refereeing or being 
consulted by other referees: they occur often enough to 
justify the discussion below. In the latter case, a few 
authors have applied Hamilton's test to the enhanced 
ratios from 'sensitive reflexions', but apparently with- 
out thought as to the legitimacy of doing so. The 
abuses, together with other considerations which 
suggested that the ratio test tends to be over-optimistic, 
prompted me to re-examine the basis of Hamilton's 
applications of the R-factor test to this problem and led 
to the conclusion that his argument does not appear to 
conform to his definition of a linear hypothesis. An 
attempt is made to validate this application so that the 
test can continue to be used, but in doing so a proposal 
is made for an alternative assignment procedure that 
yields its own independent confidence index which is 
expected to be more realistic. The first three trials of 
this alternative procedure look very encouraging. 

© 1981 International Union of Crystallography 
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Rothstein, Richardson & Bell (1978) have also 
recently critically discussed Hamilton's ratio test with 
special reference to his assumption of linearity and the 
distribution of errors, and they put forward two 
alternative tests based on either the statistical 'jack- 
knife' technique or Kendall's test of independence, both 
of which appear from tests to be more realistic, but 
only the briefest passing reference is made to the 
possibility of using them in the assignment of chirality. 

In view of the abuses and misunderstandings, it is 
regrettably necessary in this paper to devote space to 
saying what may not be done and explaining why, but 
numerous positive recommendations are made and 
these should be read in conjunction with other 
recommendations of a more practical nature recently 
published by Rogers & Allen (1979). 

The application of  Hamilton's test 

First, it is necessary to remind ourselves of the 
circumstances under which Hamilton's test is usually 
applied. One solves the structure for a given set of 
phases and refines it as far as is deemed necessary with 
real atomic scattering factors and preferably 
absorption-corrected data. This gives a set of coordi- 
nates, the 'working list', +xj, referred to right-handed 
axes together with their thermal parameters and the 
scale factor. In the absence of dispersion effects the 
inverse structure (-xj ,  etc.) is an equally acceptable 
solution and gives the same R factor. However, when 
dispersion effects occur the symmetry of IFol in 
reciprocal space degrades from the Laue symmetry to 
reveal the true point group. Thus, reflexions {hkl} that 
are point-group related to hkl all have the same 
intensity which may differ from that found for aU the 
reflections {/~ki} that are point-group related to hki. Any 
antipodal pair is referred to as a Friedel pair, but more 
generally any pair, one from {hkl} and the other from 
{hki}, constitute a Bijvoet pair and can be used for the 
assignment. 

In order to identify which chirality (and/or polarity 
in some space groups) is true of the crystal as mounted 
one can proceed in one oftwo ways (see Fig. 1). 

(A) Calculate two sets of F c, one for the coordinate 
set +xj and the other for the antipodal structure, -x j .  
Both sets use the same thermal parameters and scale 
factor and + ~ "  for each dispersive atom. These sets 
give different R values, R + and R-,  defined below. (R w 
is the weighted R factor defined by Hamilton.) 

Fc(+xj, B u, + ~ " ) : ~  R + or R + 

Fc(-x j ,  B u, +/ff ')  =~ R-  or R; .  

It should be noted that inversion of the structure in an 
enantiomorphous space group changes the space 
group, and that there are nine other space groups for 
which inversion is not straightforward (Rogers, 1980). 

(B) The same values of R +, R - ,  etc. are obtained 
much more conveniently and reliably by keeping all the 
coordinates and the space group intact and merely 
reversing the sign of all the ~" ' s .  Thus, 

Fc(+Xj, Bu, +ifj")=~ R + or R + 
Fe(+XI, B u , - i f f ' )  :=> R -  or R~. 

By either route one obtains the ratio . ~  = R - / R  + (or 
- -  + 3 w = R w/Rw) used in Hamilton's test. It is strictly 

applicable only to the weighted ratio, but the un- 
weighted ratio ..~ is usually quoted and has hitherto 
been regarded as an acceptable approximation, for, 
while R-  and R + may differ appreciably from RTv and 
R +, the two ratios are more nearly the same. However, 
I am indebted to Professor T. J. King for recently 
bringing to my notice two examples where ~ w  (for 
which the weighting had been re-programmed to 
conform to Hamilton's definition) and ~ for the same 
compound indicated antipodal assignments. One of 
them is quoted below. In both cases independent 
evidence favoured the ~ w  assignment. (It is too soon to 
offer considered comments on these observations, but 
readers are advised to check both ratios, especially 
when the discrimination is marginal.) 

For a given value of .~  or -~w one looks up 
Hamilton's tables of ~ ( b , N , a )  to estimate a, given b, 
the dimension of the hypothesis, and N, the number of 
degrees of freedom, i.e. (n - m), where n is the number 
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Fig. 1. The two methods of finding the chirality of a crystal by Hamilton's test. 
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of independent reflexions used for least-squares refine- 
ment of the m variables. The tables cover only ~ > 1. If, 
for a given problem, ~ proves to be < 1, the working 
list of coordinates (which gives R ÷) defines the 'wrong' 
chirality/polarity. In that event the coordinate list must 
be inverted and the space group changed if necessary 
to invert the ratio and bring 5~ within the scope of the 
tables. A plea was recently made not to publish 
coordinate lists for a chirality that is known to be 
wrong: it leads to abstracting difficulties (Rogers & 
Allen, 1979). 

It is usual when following the procedure of Fig. 1 to 
apply a dispersion correction only for the atoms with 
the strongest anomalous scattering, but if this is done 
the value of ~ (and thus of a -i) can be considerably 
too large. 

I am indebted to Professor T. J. King and Dr M. J. 
Begley for the following figures that illustrate both this 
point and that mentioned above. Compound C20H24Os; 
Z = 4 in P2a2121; 1818 reflexions, 253 variables; R = 
0.037. 

Correction 
applied to ,'~w (=R~/R+) a ~,1 j,? ( = R - / R  +) a-~ 

O atoms only 1.003 537 0.995 13667 
C mad O atoms 1.0005 4 0-997 548. 

The values Ofaw 1, which were obtained from ~ w  with 
equation (4) (see later), differ substantially, the first 
(537) being clearly a serious overestimate, and the 
second (4) showing that no assignment can safely be 
made. The values of unweighted ~ ,  both of which are 
< 1, indicate the opposite chirality, and the values of a -~ 
(derived from 1 / ~  by use of equation 4) suggest that 
the antipodal assignment is even stronger, whereas 
subsequent work on a bromo derivative emphatically 
supported the 3 w assignment. If these figures prove to 
be typical, it is clear that the use of ~ in marginal cases 
seriously overestimates the probability of an assign- 
ment and may even get it wrong; that ~ w  provides a 
much more cautious estimate of the probability and is 
more likely to get the assignment right; and that ~ w  is 
much more sensitive than ~ to overestimation if 
correction is made for only one species of atom. 

Several authors have published assignments at about 
these levels of 3 and regarded them as acceptable. The 
above figures support the misgivings some of us have 
had about such assignments, for at these low levels of 

one is dredging around among the round-off errors 
in both F o and F c and the ratio is then of doubtful 
physical significance. 

The origin of the overestimation is readily under- 
stood. Thus, if all the atoms in the structure have 
scattering factors, fj(1 + fij), one can write 

F(hkl )  = Z Fj(1 + i~j) exp(icpj) 
J 

and 

F(hkl )  = ~. Fj(1 + i6j) exp(--icpj), 
J 

where Fj is the resultant scattering for all atoms of type 
j present in the structure. If now all 6 i were the same 
regardless of atomic number, these two structure 
factors would have identical amplitudes but differ in the 
magnitudes of their phases, i.e. the Bijvoet anomaly 
would vanish for every reflexion. Anomalies are in fact 
observed only if the values of 6j differ for the different 
atomic species. If, as is so often done, it is assumed that 
6j = 0 for most atoms and is non-zero for only a small 
subset, comparison of the Argand diagrams with and 
without the full complement of anomalous components 
shows that, for any combination of Fjexp(_+iq~j) 
contributions, the corresponding values of IFc(hkl)l 
and IFc(hkl)l will differ more than they should and so 
lead to an overestimate of ~ .  

For compounds with strong anomalous scatterers 
the assignment of chirality is not likely to be in doubt, 
but a -a is likely to be considerably overoptimistic. For 
compounds where the assignment is more marginal 
(especially those where oxygen is the principal scat- 
terer) it is imperative to allow for dispersion of all 
non-hydrogen atoms and to check whether ~ and ~97 w 
are concordant. In such cases the only really satis- 
factory procedure is to make direct measurement of 
Bijvoet anomalies for a number of sensitive reflexions. 

Misconceptions associated with the dimension of the 
hypothesis 

For an assignment of absolute configuration based on 
defined in this way, the hypothesis is said by 

Hamilton to be one-dimensional. Nevertheless, despite 
his clear statement in this regard, it has sometimes been 
argued that b is greater than unity. Thus, for P21, 
where inversion can be achieved merely by reversing 
the signs of y, U12 and U23 for every atom, some 
authors have treated the reversal of these three 
parameters as independent linear assumptions and so 
set b = 3. This is wrong, for mirroring the structure and 
the thermal ellipsoids in the plane y = 0 necessarily 
reverses the signs of these three parameters for all 
atoms en masse: it is a single operation in which all 
parameters dependent on the sign of y are coupled 
together. In procedure B above, one can attribute the 
difference in IFcl solely to the simultaneous reversal of 
the signs of all the f f '  terms: all the m refinable 
parameters are common to both sets of IFcl. 

If one bases the refinement on a unique set of 
measured data and uses real scattering factors in the 
refinement prior to making the test, the set of 
coordinates (+xj etc.) will be biased slightly toward the 
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IFol'S in the particular set of data collected. On the 
other hand, if duplicate data, representing Bijvoet pairs, 
are recorded and averaged before the refinement, this 
bias is reduced. 

There is, however, a more subtle and widespread 
misunderstanding concerning the dimension of the 
hypothesis. Thus, some workers did not derive their 
ratio in the above way, but nevertheless had no 
hesitation in using Hamilton's test. Some used a 
least-squares refinement program (such as S H E L X )  
which normally commits them from the start to the use 
of complex scattering factors. Others, who start 
refinement with real f ' s ,  chose to defer the evaluation 
of ~q' till after a few cycles of refinement with complex 
f ' s  in order to obtain an enhanced value of ~ ' .  Two 
alternative routes are used (see Fig. 2). 

(a) Two refinements starting from +xj and allowing, 
separately, for both +/of" and - / f "  yield, as shown in 
the left-hand half of Fig. 2, two slightly differing sets of 
parameters, +xj + and +x]-, which will be referred to 
here as 'dispersion-refined' parameters. The Bu's and 
scale factor will also differ, and, if Gilli & Cruick- 
shank's (1973) experience is in any way typical, these 
differ more than the coordinates. 

(b) Two refinements starting from +xj and - x j  
with + ~ "  (allowing for a space-group switch if 
necessary) yield two sets of 'dispersion-refined' param- 
eters, +x + and - x  +. Clearly I-x+l = I+xTI , and these 
two solutions lead, as in Fig. 2, to identical values of 
IFcl, viz. IF41 whereas, +x + a n d - x f  lead to lEa1. 
During a survey of the literature and while refereeing I 
found that several authors drew a veil of obscurity 
over precisely what they did next. In one paper, 
however, they said explicitly that they compared the 
R factor derived from IF31 (based on +xJ- taken with 
+ ~ " )  with that derived from the IFcl obtained by 
taking - ( + x f )  with + ~ " .  The latter is equivalent 
(cf. Fig. 2) to --xj- taken with + ~ " :  it is a nonsense 
and any inference drawn from the ratio test in such 

a case must be suspect. Fig. 2 shows other nonsensical 
combinations. Several sets of authors said explicitly 
that they had compared the R factors based on 
IF31 and IF al in Fig. 2 and with this there can be no 
quibble, except that some of them went on to estimate a 
with b = 1. This, however, is indefensible, for it is no 
longer true that the m refinable parameters are identical 
in the two enantiomeric dispersion-refined models (+xj + 
and --xj+). The dimension in such a situation is a matter 
for debate. I have discussed the problem with a number 
of colleagues. All agreed that it was inadmissible to use 
b =  1, but some felt as did I originally that it is 
analogous to the first example that Hamilton cited, so 
that b = m + 1. Others, including now myself, feel that 
the analogy is not valid and that there is no basis for 
comparison, so that the ratio test cannot be applied to 
this procedure. Even if the former view can be 
sustained the change in b has a disastrous effect on the 
estimated probability. For example, consider a struc- 
ture for which n = 1060 independent reflexions and 
m =-60 refinable parameters. We can compare the 
values of ~ '  as a function of a for the two cases just 
discussed where b = 1 or 61 (Table 1). 

It is clear from Table 1 that a test based on 
dispersion-refined parameters has lost most of its 
discriminatory power and the loss is even more marked 
for higher values of b. Consider the following typical 
values of 3 for the above structure: 1.015 for real-f 
refinement (b = 1, N = 1000) gives a = 1.3 x 10-7; 
1.045 for dispersion-refined parameters (b = 61, N = 
1000) gives a = 5 x 10 -3 . Thus, a threefold 
enhancement  of (~,~ - 1) corresponds to a 38 000-fold 
reduction in the probability of the assignment. 

If this argument is correct then in almost all the cases 
examined it seemed that the enhancement obtained by 
dispersion refinement was probably statistically il- 
lusory, and the authors might well have been better off 
with the unenhanced ratio. Even if b were halved, say, 
to allow for those of the m parameters which scarcely 

I I 
I I 
l R+ I t ~lz~31 exp(i@3) " = IFal e x p ( - i ~ 3 ) \  I 
I + i f "  - i f . "  I 

-:-: < > ' 
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Fig.  2. C o r r e c t  m e t h o d s  o f  p r o c e d u r e  in H a m i l t o n ' s  R - f a c t o r  ra t io  test .  
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Table 1. Comparison of  the 3i' values as a function of  
a for  b = 1 and 61 

The values of ~'  quoted here are derived using the interpolation 
formulae given by Hamilton either from his tables or (for the 
entries marked *) from tables given by Fisher & Yates (1963) or 
Pearson & Hartley (1966). The values quoted in parentheses were 
calculated by means of equation (4). 

a ~ (1, 1060 - 60, a) ~q' (61, 1060 - 60, a) 

0.5 1.00025 (1.00031) 1.027 
0.25 1.00075 (1.00072) 1.031 
0.1 1.0014 (1.0014) 1.035 
0.05 1.0019 (1.0019) 1.038 
0.025 1.0025 (1.0024) 1.040 
0.01 1.0034 (1.0032) 1.043 
0.005 1.0040 (1.0038) 1.045 
0.001 1.0056" (1.0053) 1.050" 

differ in the two dispersion-refined models, the general 
conclusion still stands: the test has been badly blunted 
and the probability is either seriously weakened or 
cannot be calculated at all. 

Varying N, the number of degrees of freedom 

For a given value of ~9~, a decreases with increasing n, 
the number of independent intensities used for calculat- 
ing R + and R-.  Strictly speaking n should be the 
number of terms used in the least-squares refinement, 
but if one were able to base an assignment on a limited 
random sample of reflexions that gave the same ~ ,  the 
value of a would rise substantially because of the 
reduction in N. Many of the reflexions are mere 
passengers in the calculations of the AF's and their 
contributions to R + and R -  are credited with more 
significance than is warranted. Hamilton's weighted 
ratio, ~-~w, discounts weak or unreliable IFol'S, but 
there is need for another kind of weighting, to 
discriminate against those Bijvoet pairs for which the 
interval between IF+l and IFcl is not statistically 
significant compared with the range IFol + ka(Fo), 
where k is some suitable confidence limit. My col- 
league, Dr D. J. Williams, and I have discussed the 
feasibility of introducing such weights. One could, for 
example, do it crudely by simply omitting those terms 
for which both IF+l and IFcl lay inside the above 
range of IFol, but this is arbitrary. Alternatively, one 
could use a probability-weighted ratio 

or, perhaps 

Y.P-  A F - / Y . P -  IFol 

= R-JR+= Z P  + AF+/y .p  + IFol (1) 

= Y P -  A F - / ~  P+ AF +, 

where 

( la )  

A F  +- = IIFol- iF+ll 

and 

P+ = 1 - expl--(IFo-+l -- IFol)212tr], (2) 

say. In neither case can we see any way of adapting 
Hamilton's theory to accept such weights. We are left 
with the conviction that the values of N hitherto used 
are unrealistically large and are unwarrantably inflating 
the estimate of confidence in the assignment. This is, 
therefore, a second and quite different reason for 
regarding the majority of a 's  as too small. 

A different sort of problem arises with the use of 
sensitive reflexions. In the earliest papers, where 
photographic data were used, a number of such 
reflexions (rarely exceeding about 25) were cited, but 
now with diffractometer data the number of sensitive 
terms has occasionally been substantially larger, and 
since the advent of Hamilton's  test some authors have 
employed it in this context. This too is inadmissible, for 
one is selecting a strongly biased and thoroughly 
atypical set of reflexions, whereas Hamilton's  theory is 
based on the totality of the independent observed data. 
Again, in this context it is perfectly in order to quote R -  
and R +, or their weighted equivalents, but not to derive 
an estimate of a therefrom. 

A special case of selection has, however, been found 
useful on several occasions in this laboratory, viz. the 
exclusion of all centric reflexions. Such reflexions 
cannot exhibit Bijvoet anomalies, and, as on average 
they contribute more to the AF's than acentric reflexions 
(Wilson, 1950; Phillips, Rogers & Wilson, 1950), they 
contribute the same disproportionate quota to both the 
numerator and denominator of R- /R  + ( = ~ . A F - /  
Y AF +) and thus weaken the ratio. In some space 
groups the exclusion of centric reflexions is well worth 
while, but this is not always the case. Thus, in one 
recent example, a compound, C23H23OsBr in P41212, 
gave with Cu Ka radiation the ratio 1.020 for 3 .  Of 
the 863 terms 366 were centric, and these contained the 
rows {h00}, {hh0} and {001} which have enhanced 
intensity averages and thus larger AF's. When the 
centric terms were removed the ratio became 1.037. In 
this problem m, the number of refined parameters 
(omitting hydrogen) is (32 x 9) + 1 = 289, so N 
becomes 863 - 289 = 574, or after exclusion only 208. 
Then, 

~ ' ( 1 , 574 ,  a l )  = 1.020 gives a 1 = 3.0 × 10 -6, 

whereas 

~.~(1,208, a2)= 1.037 gives a 2 = 1.2 x 10 -4. 

The enhancement in this case did not lead to an 
improvement in a, mainly because N was reduced so 
drastically. In lower-symmetry problems or where the 
number of independent observations is larger, the 
reduction in N is not so serious and a real advantage is 
often obtained. This method of enhancing the ratio is 
believed to be valid, for it embraces all the acentric 
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reflexions unlike the atypical subset discussed above. 
The first mention of such a limitation so far as we know 
occurs in a brief note on the assignment of lycopodine 
(P21212~) by Rogers, Quick & Mazhar-U1-Haque 
(1974). 

In conclusion it appears that, apart from the 
exclusion of centric reflexions, all other modes of 
enhancement give a ratio which is not susceptible to 
statistical assessment. It was these problems and 
uncertainties that drove the present author, as 
described in a later section, to re-examine the basis of 
Hamilton's application of linear-hypothesis testing to 
this particular problem. 

Computational aids 

It frequently happens, as in several instances above, 
that 3 falls well outside the range of Hamilton's 
published tables and, although he gave formulae for 
interpolating and extrapolating on N and interpolating 
on b, he gave no means of interpolating or extra- 
polating on a. His values of ~ were calculated from 

F(a) b 
[ ~ ( a ) ]  2 -- 1 -- - - ,  (3) 

N 

where F(a) is the Fisher variance-ratio statistic, and 
this he took from tables published by Merrington & 
Thompson (1943-6). Freshly computed tables were 
published by Pearson & Hartley (1966) and included a 
table for a = 0.001 (taken from Colcord & Deming, 
1935-6), which was not included by Hamilton. The 
remainder of this section is based on these later and 
additional values. 

Fig. 3 gives a rapid means of estimating a for the 
one-dimensional hypothesis test. A little experi- 
mentation showed that the plot of loglog(J?) versus 
log (N) is a remarkably good straight line for each value 
of a. These lines, which are shown in Fig. 3, all have a 
slope close to -1-02 .  Their intercepts, i,~, on the 
quasi-normal shown were plotted in the form of 
loglog(1/a) versus i~, and, apart from a = 0.5 and 0.25 
(which are of no value in this context), this too gave a 
straight line which was considered justification for 
predicting where the iso-a lines for a < 0.001 will run. 
Copies of Fig. 3 measuring 550 x 380 mm are 
available from the author at a small charge for 
reproduction. 

I am indebted to my son, Neil, for the suggestion that 
it should be possible to eliminate i,~ from these two sets 
of linear relationships and thus embrace all the 
one-dimensional hypothesis data in an equation of the 
form 

loglog(.#) = 2 loglog(l/a) + # log(N) + v. 

Least-squares calculations, based on the 20 values 
taken from the Biometrika Tables for Statisticians 

(Pearson & Hartley, 1966) that correspond to the a, N 
combinations enclosed within the rectangle in Table 2, 
gave 

log log(3)  = 1.239796 loglog(1/a) 
/ 

-- 1.013506 log(N) - 0.188892 L 
or  f ,  

lnln(~W) = 1.239796 lnln(1/a) [ 
/ 

- 1.013506 In(N) - 0.634938 J 

(4) 

which has proved to be a good approximation. Table 2 
compares the values computed by this equation with 
the original data: the agreement is good not only over 
the 20 fitted values, but also for N > 120 as the values 
agree well with those extrapolated by use of Hamilton's 
formula (Ib). It is believed to be an acceptable 
approximation for a < 0.001, especially for large N. 
Checks have shown that the constants in equations (4) 
can be rounded to four decimal places without 
significant loss of precision in ~ .  
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~ ~ 5 ~  10-~ "0.005 
"0.01 

_ \0.1 
0 015 I'.0 115 210 2!5 310 315 ~0-25 

log N = (n-m) 

Fig. 3. Chart for estimating the probability, a, of a one-dimensional 
hypothesis, given ,12, Hamilton's R-factor ratio, and N, the 
number of degrees of freedom. The line AB has been drawn to 
improve the readability of the chart. If one lays a ruler on the 
chart parallel to the iso-a lines and through the desired point (C 
for example) this meets AB at E and the horizontal coordinate of 
E measured on the upper-edge scale gives the corresponding 
value of loglog(lh~). The iso-a lines, which correspond to 
equation (4), are in close accord with Hamilton's data except for 
the little-used lines, a = 0.25 and 0.5. Each line through the 
plotted points is a least-squares line for that vlaue of a, whereas 
the remainder are derived from equation (4). 
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Table 2. Comparison o f  ~ values f o r  a one-dimensional  hypothesis 

The numbers are derived as follows: 
Value quoted by Hamilton (for N _< 120) or derived from his table by his extrapolation formula (Ib). 

Value calculated from the Biometrika Tables for Statisticians (Pearson & Hartley, 1966) with equation (3). 

Value calculated by means of equation (4). 

a 0.25 0.10 0.05 0.025 0.01 0.005 0.001 0.0005 0.0001 10 -5 
1X 5 X 1X 
10-5 10-6 10-6 

1.205 1.462 1 . 7 1 1  2.014 2.510 2.972 
4 1.2052 1.4612 1.7110 2.0137 2.5100 2.9720 4.4198 

1.2153 1-4415 1.6599 1-9270 2.3718 2.7945 4.1695 4.990 7.69 9.32 14.73 18.03 29.14 

30 

60 

120 

1-092 -1.197 
1.0920 1.1969 
1.1014 1.1986 

1.047 1.098 
1.0466 1.0976 
1-0524 1.1005 

1.023 1.047 
1.0227 1.0469 
1.0256 1.0486 

1-011 1.023 
1.0112 1.0230 
1.0126 1.0238 

1-006 1.011 
1.0056 1.0114 
1-0062 1.'0117 

1.290 1.395 1.552 1.684 
1.2903 1.3951 1.5516 1.6841 2.0439 
1.2854 1.3839 1-5339 1.6637 2.0284 

1.141 1.189 1.257 1.311 
1.1413 1.1888 1.2565 1.3115 1.4512 
1.1420 1.1875 1.2539 1.3089 1.4535 

1.067 1.089 1.119 1.143 
1.0672 1.0889 1.1189 1.1428 1.2012 
1.0680 1-0888 1.1186 1.1426 1-2035 

1.033 1.043 1.057 1.068 
1.0328 1.0432 1.0574 1.0684 1.0952 
1.0331 1.0431 1.0571 1-0683 1.0961 

1.016 1 . 0 2 1  1.028 1.034 
1.0162 1.0212 1.0281 1.0335 1.0463 
1.0163 1.0211 1.0279 1.0333 1.0465 

2.217 2.747 3.021 3.790 4.189 5.314 

1.5236 1.7062 1.7942 2.0230 2.1330 2-4188 

1.2319 1.3030 1.3359 1.4177 1.4553 1.5489 

1.1088 1.1401 1.1542 1.1887 1.2043 1.2420 

1.0525 1.0671 1.0736 1.0894 1.0964 1.1133 

240 1.0028 1-0057 1-0081 1.0106 1.0141 1.0168 1.0232 
1.0031 1.0058 1.0080 1.0104 1.0137 1.0163 1.0228 

500 1.0013 1.0028 1.0039 1.0051 1.0067 1.0080 1.0111 
1.0015 1.0027 1.0038 1.0049 1.0065 1.0077 1.0108 

1000 1.0007 1.0014 1.0019 1.0025 1.0034 1.0040 1.0056 
1.0007 1.0014 1.0019 1.0024 1.0032 1.0038 1.0053 

1500 1.0005 1.0009 1.0013 1.0017 1.0022 1.0027 1.0037 
1.0005 1.0009 1.0012 1.0016 1.0021 1.0025 1.0035 

2000 1.0004 1.0007 1.0010 1.0013 1.0017 1.0020 1.0028 
1-0004 1.0007 1.0009 1.0012 1.0016 1.0019 1.0026 

2500 1.0003 1.0006 1.0008 1.0010 1.0013 1.0016 1.0022 
1.0003 1.0005 1.0007 1.0010 1.0013 1.0015 1.0021 

3000 1.0002 1.0005 1.0006 1.0008 1.0011 1.0013 1.0019 
1-0002 1.0004 1.0006 1.0008 1.0011 1.0013 1.0017 

A re-examination of  Hamilton's  theory 

Hami l ton  defines each dimension of  the hypothesis  as a 
distinct l inear const ra int  on the magni tudes  of the 
refinable variables, either by imposing a fixed 
numerical  value on one or by imposing linear relation- 
ships between others,  and he expressed their combined 
effect as a matr ix  equat ion (16). However ,  he made no 
at tempt  in his example 4 to relate his s tatement  - that  
b = 1 for an ass ignment  of  absolute configurat ion - to 
his earlier definition, nor to express it in matr ix  form, 
though he is at some pains to spell out the derivation of  
b in the other five examples.  It seems to him to have 
been self-evident, and in an intuitive sense one can 
indeed follow him, for, as shown above, if ~J~ is based 
on real-f-refined parameters  the one hypothesis  is that ,  

1.0257 1.0327 1.0358 1.0433 1.0467 1.0546 

1.0121 1.0154 1.0169 1.0204 1.0219 1.0256 

1.0060 1.0076 1.0083 1.0100 1.0108 1-0126 

1.0040 1.0050 1.0055 1.0066 1-0071 1.0083 

1.0030 1.0038 1.0041 1.0050 1.0053 1.0062 

1.0024 1.0030 1.0033 1.0040 1.0043 1.0050 

1.0020 1.0025 1.0027 1.0033 1.0035 1.0041 

if the structure be inverted, i.e. the signs of  all the x ,y , z  
parameters  are reversed en masse but without  reversing 
the sign of  the f f '  terms, the enan t iomorph  giving the 
lower of  the two R factors  represents the absolute 
chiral i ty/polar i ty .  But there seems to be no r igorous 
way  of  expressing this inversion of  the whole structure 
in terms of  Hami l ton ' s  defining equat ion (16). 

An alternative is to treat  the imaginary  terms i f f '  as 
refinable variables and there are some least-squares 
programs tha t  allow one to refine each f f '  term 
separately and they work reasonably  well, but  it is 
doubtful whether  the facility existed in any p rogram 
when Hami l ton  wrote and he does not  ment ion it. 

I have discussed the mat ter  with several individuals 
who all agreed that  a formal  inconsis tency seems to 
exist in jus t  this one applicat ion of  the ratio test. It is 
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oddly out of keeping with Hamilton's rigorous turn of 
mind. I am indebted to Professor D. W. J. Cruick- 
shank and Dr D. S. Moss for suggestions which were 
along lines similar to my own and which I have adapted 
into the following suggested means of validating 
Hamilton's argument, namely that a single new 
least-squares variable, r/, be introduced into every 
dispersion term, ir/ff', that contributes in a given 
crystal structure, r/ could be kept zero in the early 
stages of refinement, but later, when allowed to refine, it 
should converge on a value close to either + 1 or - 1 .  
Hamilton may well have regarded the sign of the set of 
f "  terms as a single virtual least-squares variable which 
is never actually refined, but whose value when it is 
eventually introduced has a fixed value + 1. However, 
with the substitution of r/ as a true least-squares 
variable it could perhaps be argued that this appli- 
cation of linear-hypothesis testing would be formally 
validated as one-dimensional, that doubts about past 
assignments on this score can be dismissed (though the 
estimates of a are certainly over-optimistic), and that 
we can continue to use his test. 

However, the introduction of r/offers other practical 
advantages. First, it provides a convenient switch for 
reversing the chirality or polarity of a set of Fc's. 
Secondly, it automatically excludes centric terms from 
r/refinement and, at a stroke, dismisses all the problems 
arising over the appropriate values for b and N. 
Thirdly, its precision, o(r/)/I r/I, which is approximately 
tr(r/), is readily computed and is an alternative index of 
confidence which might well be preferable to a in many 
of the difficult situations discussed above. It is likely to 
be far less optimistic and it should be easy to examine 
how the values of r/ and of its e.s.d, depend on 
weighting schemes and the presence or absence of 
absorption corrections, how it varies for different 
ranges of 19, and whether it is consistent at different 
stages in the refinement of the whole structure. It might 
even be possible to introduce some sort of weighting on 
the lines of equation (1) above. In addition, the 
assessment of the dependence of its precision on 
alternative refinement procedures and weighting 
schemes would follow lines with which we are all 
familiar and are much less debatable. 

Very shortly after the submission of this paper, on 24 
July 1980, I received from Professor G. M. Sheldrick 
(University of Gbttingen, Federal Republic of Ger- 
many) the first results of an r/refinement which he had 
incorporated into his S H E L X T L  program for the 
Eclipse computers. The results are tabulated below. 

log~o (1 + It/I) 
Z n -- rn ~0 Ca -l) r/(a[r/]) o(r/) 

(1) SeCz3H2sO2 P2, 2 2 1 5 4  1.392 158 +1.056 (42) 49 
(2) Rh4(mhp)s.- 141cd 8 5 1 8 9  1.110 128 +0.980 (48) 41 

2CH2CI2 
(3) SC~0H~oO 3 P2,2~2 t 4 1340  0.981 10.8 -1.32 (27) 8.6 

All three crystals were measured with Mo Ka radiation. 

In the first two examples the Friedel opposites had been 
carefully measured and corrected for absorption, and a 
decisive R-factor ratio obtained. The values of r/and its 
e.s.d, for both compounds are equally decisive and the 
assignments by both methods agree. For the last 
structure, on the other hand, only one octant of data 
was available, no special precautions had been taken, 
and no attempt made to ascertain the absolute 
configuration prior to r/refinement. Nevertheless, the 
value of r/ (which had refined from +1.0) clearly 
indicated that the configuration should be inverted, and 
this conclusion was subsequently borne out by evaluat- 
ing ~.~ and a, which was calculated from 1 / ~  with 
equation (4). The last column expresses the gap 
between the observed value of r /and its value for the 
enantiomeric structure in terms of tr(r/). Even for the 
third example the value of 8.6o(r/) is decisive. 

These results are most encouraging, but further trials 
are needed, especially on marginal data such as that 
referred to earlier which was supplied by Professor 
King. As this program has recently become operational 
in this laboratory as well as at G6ttingen we look 
forward to exploring the potential and robustness of r/ 
refinement. 

I am indebted to a number of individuals for their 
willingness to discuss these problems. Many, but not 
all, are cited in the text, but I am especially grateful to 
Professors Cruickshank and King for stimulating and 
encouraging correspondence, and particularly to Pro- 
fessor Sheldrick for the enthusiastic way he seized on 
my suggestion and the speed with which he produced 
results. I am also indebted to Mrs A. M. Atkinson for 
use of her data. 
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